使用(半)自动显微镜生成的大规模电子显微镜(EM)数据集已成为EM中的标准。考虑到大量数据,对所有数据的手动分析都是不可行的,因此自动分析至关重要。自动分析的主要挑战包括分析和解释生物医学图像的注释,并与实现高通量相结合。在这里,我们回顾了自动计算机技术的最新最新技术以及分析细胞EM结构的主要挑战。关于EM数据的注释,分割和可扩展性,讨论了过去五年来开发的高级计算机视觉,深度学习和软件工具。自动图像采集和分析的集成将允许用纳米分辨率对毫米范围的数据集进行高通量分析。
translated by 谷歌翻译
通用数据模型解决了标准化电子健康记录(EHR)数据的许多挑战,但无法将其集成深度表型所需的资源。开放的生物学和生物医学本体论(OBO)铸造本体论提供了可用于生物学知识的语义计算表示,并能够整合多种生物医学数据。但是,将EHR数据映射到OBO Foundry本体论需要大量的手动策展和域专业知识。我们介绍了一个框架,用于将观察性医学成果合作伙伴关系(OMOP)标准词汇介绍给OBO铸造本体。使用此框架,我们制作了92,367条条件,8,615种药物成分和10,673个测量结果的映射。域专家验证了映射准确性,并且在24家医院进行检查时,映射覆盖了99%的条件和药物成分和68%的测量结果。最后,我们证明OMOP2OBO映射可以帮助系统地识别可能受益于基因检测的未诊断罕见病患者。
translated by 谷歌翻译
尽管电子健康记录是生物医学研究的丰富数据来源,但这些系统并未在医疗环境中统一地实施,并且由于医疗保健碎片化和孤立的电子健康记录之间缺乏互操作性,可能缺少大量数据。考虑到缺少数据的案例的删除可能会在随后的分析中引起严重的偏见,因此,一些作者更喜欢采用多重插补策略来恢复缺失的信息。不幸的是,尽管几项文献作品已经通过使用现在可以自由研究的任何不同的多个归档算法记录了有希望的结果,但尚无共识,MI算法效果最好。除了选择MI策略之外,归纳算法及其应用程序设置的选择也至关重要且具有挑战性。在本文中,受鲁宾和范布伦的开创性作品的启发,我们提出了一个方法学框架,可以应用于评估和比较多种多个插补技术,旨在选择用于计算临床研究工作中最有效的推断。我们的框架已被应用于验证和扩展较大的队列,这是我们在先前的文献研究中提出的结果,我们在其中评估了关键患者的描述符和Covid-19的影响在2型糖尿病患者中的影响,其数据为2型糖尿病,其数据为2型糖尿病由国家共同队列合作飞地提供。
translated by 谷歌翻译
Deep learning-based pose estimation algorithms can successfully estimate the pose of objects in an image, especially in the field of color images. 6D Object pose estimation based on deep learning models for X-ray images often use custom architectures that employ extensive CAD models and simulated data for training purposes. Recent RGB-based methods opt to solve pose estimation problems using small datasets, making them more attractive for the X-ray domain where medical data is scarcely available. We refine an existing RGB-based model (SingleShotPose) to estimate the 6D pose of a marked cube from grayscale X-ray images by creating a generic solution trained on only real X-ray data and adjusted for X-ray acquisition geometry. The model regresses 2D control points and calculates the pose through 2D/3D correspondences using Perspective-n-Point(PnP), allowing a single trained model to be used across all supporting cone-beam-based X-ray geometries. Since modern X-ray systems continuously adjust acquisition parameters during a procedure, it is essential for such a pose estimation network to consider these parameters in order to be deployed successfully and find a real use case. With a 5-cm/5-degree accuracy of 93% and an average 3D rotation error of 2.2 degrees, the results of the proposed approach are comparable with state-of-the-art alternatives, while requiring significantly less real training examples and being applicable in real-time applications.
translated by 谷歌翻译
To analyze this characteristic of vulnerability, we developed an automated deep learning method for detecting microvessels in intravascular optical coherence tomography (IVOCT) images. A total of 8,403 IVOCT image frames from 85 lesions and 37 normal segments were analyzed. Manual annotation was done using a dedicated software (OCTOPUS) previously developed by our group. Data augmentation in the polar (r,{\theta}) domain was applied to raw IVOCT images to ensure that microvessels appear at all possible angles. Pre-processing methods included guidewire/shadow detection, lumen segmentation, pixel shifting, and noise reduction. DeepLab v3+ was used to segment microvessel candidates. A bounding box on each candidate was classified as either microvessel or non-microvessel using a shallow convolutional neural network. For better classification, we used data augmentation (i.e., angle rotation) on bounding boxes with a microvessel during network training. Data augmentation and pre-processing steps improved microvessel segmentation performance significantly, yielding a method with Dice of 0.71+/-0.10 and pixel-wise sensitivity/specificity of 87.7+/-6.6%/99.8+/-0.1%. The network for classifying microvessels from candidates performed exceptionally well, with sensitivity of 99.5+/-0.3%, specificity of 98.8+/-1.0%, and accuracy of 99.1+/-0.5%. The classification step eliminated the majority of residual false positives, and the Dice coefficient increased from 0.71 to 0.73. In addition, our method produced 698 image frames with microvessels present, compared to 730 from manual analysis, representing a 4.4% difference. When compared to the manual method, the automated method improved microvessel continuity, implying improved segmentation performance. The method will be useful for research purposes as well as potential future treatment planning.
translated by 谷歌翻译
ICECUBE是一种用于检测1 GEV和1 PEV之间大气和天体中微子的光学传感器的立方公斤阵列,该阵列已部署1.45 km至2.45 km的南极的冰盖表面以下1.45 km至2.45 km。来自ICE探测器的事件的分类和重建在ICeCube数据分析中起着核心作用。重建和分类事件是一个挑战,这是由于探测器的几何形状,不均匀的散射和冰中光的吸收,并且低于100 GEV的光,每个事件产生的信号光子数量相对较少。为了应对这一挑战,可以将ICECUBE事件表示为点云图形,并将图形神经网络(GNN)作为分类和重建方法。 GNN能够将中微子事件与宇宙射线背景区分开,对不同的中微子事件类型进行分类,并重建沉积的能量,方向和相互作用顶点。基于仿真,我们提供了1-100 GEV能量范围的比较与当前ICECUBE分析中使用的当前最新最大似然技术,包括已知系统不确定性的影响。对于中微子事件分类,与当前的IceCube方法相比,GNN以固定的假阳性速率(FPR)提高了信号效率的18%。另外,GNN在固定信号效率下将FPR的降低超过8(低于半百分比)。对于能源,方向和相互作用顶点的重建,与当前最大似然技术相比,分辨率平均提高了13%-20%。当在GPU上运行时,GNN能够以几乎是2.7 kHz的中位数ICECUBE触发速率的速率处理ICECUBE事件,这打开了在在线搜索瞬态事件中使用低能量中微子的可能性。
translated by 谷歌翻译
结构性健康监测(SHM)的一个主要问题是损害的预后和结构剩余使用寿命的定义。这两个任务都取决于许多参数,其中许多参数通常不确定。许多模型是针对上述任务开发的,但是它们是确定性的或随机的,只能考虑到结构的过去状态限制的能力。在当前的工作中,提出了一个生成模型,以预测结构的破坏演变。该模型能够在基于人群的SHM(PBSHM)框架中执行,以考虑到许多过去的结构状态,以在建模过程中纳入不确定性,并根据从结构中获取的数据产生潜在的损害进化结果。该算法在模拟的损伤演化示例上进行了测试,结果表明,它能够提供有关人群中结构剩余使用寿命的非常自信的预测。
translated by 谷歌翻译
逆运动学(IK)系统通常相对于其输入特征很僵硬,因此需要将用户干预适应新骨架。在本文中,我们旨在创建一个适用于各种人类形态的灵活的,学到的IK求解器。我们扩展了最先进的机器学习IK求解器,以在众所周知的皮肤多人线性模型(SMPL)上运行。我们称我们的模型SMPL-IK,并表明当集成到实时3D软件中时,该扩展系统为定义新型AI-Asissist Animation Workfrows提供了机会。例如,通过允许用户在摆姿势的同时修改性别和身体形状,可以使姿势创作更加灵活。此外,当使用现有姿势估计算法链接时,SMPL-IK通过允许用户从2D图像引导3D场景来加速摆姿势,同时允许进一步编辑。最后,我们提出了一种新颖的SMPL形状反转机制(SMPL-SI),将任意类人形特征映射到SMPL空间,使艺术家能够在自定义字符上利用SMPL-IK。除了显示拟议工具的定性演示外,我们还介绍了H36M和Amass数据集上的定量SMPL-IK基准。
translated by 谷歌翻译
黑色素瘤是一种严重的皮肤癌,在后期阶段高死亡率。幸运的是,当早期发现时,黑色素瘤的预后是有希望的,恶性黑色素瘤的发病率相对较低。结果,数据集严重不平衡,这使培训当前的最新监督分类AI模型变得复杂。我们建议使用生成模型来学习良性数据分布,并通过密度估计检测出分布(OOD)恶性图像。标准化流(NFS)是OOD检测的理想候选者,因为它们可以计算精确的可能性。然而,它们的感应偏见对明显的图形特征而不是语义上下文障碍障碍的OOD检测。在这项工作中,我们旨在将这些偏见与黑色素瘤的领域水平知识一起使用,以改善基于可能性的OOD检测恶性图像。我们令人鼓舞的结果表明,使用NFS检测黑色素瘤的可能性。我们通过使用基于小波的NFS,在接收器工作特性的曲线下,面积增加了9%。该模型需要较少的参数,以使其更适用于边缘设备。拟议的方法可以帮助医学专家诊断出皮肤癌患者并不断提高存活率。此外,这项研究为肿瘤学领域的其他领域铺平了道路,具有类似的数据不平衡问题\ footNote {代码可用:
translated by 谷歌翻译
对脑外伤(TBI)患者的准确预后很难为治疗,患者管理和长期护理提供信息至关重要。年龄,运动和学生反应性,缺氧和低血压以及计算机断层扫描(CT)的放射学发现等患者特征已被确定为TBI结果预测的重要变量。 CT是临床实践中选择的急性成像方式,因为其获取速度和广泛的可用性。但是,这种方式主要用于定性和半定量评估,例如马歇尔评分系统,该系统容易受到主观性和人为错误。这项工作探讨了使用最先进的,深度学习的TBI病变分割方法从常规获得的医院入院CT扫描中提取的成像生物标志物的预测能力。我们使用病变体积和相应的病变统计作为扩展TBI结果预测模型的输入。我们将我们提出的功能的预测能力与马歇尔分数进行比较,并与经典的TBI生物标志物配对。我们发现,在预测不利的TBI结果时,自动提取的定量CT功能的性能与Marshall分数相似或更好。利用自动地图集对齐,我们还确定额叶外病变是不良预后的重要指标。我们的工作可能有助于更好地理解TBI,并提供有关如何使用自动化神经影像分析来改善TBI后预测的新见解。
translated by 谷歌翻译